If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-91=0
a = 16; b = 0; c = -91;
Δ = b2-4ac
Δ = 02-4·16·(-91)
Δ = 5824
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5824}=\sqrt{64*91}=\sqrt{64}*\sqrt{91}=8\sqrt{91}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{91}}{2*16}=\frac{0-8\sqrt{91}}{32} =-\frac{8\sqrt{91}}{32} =-\frac{\sqrt{91}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{91}}{2*16}=\frac{0+8\sqrt{91}}{32} =\frac{8\sqrt{91}}{32} =\frac{\sqrt{91}}{4} $
| s–3=–2 | | 2.8x5.88=2.8 | | 3=6-3q | | 35x+1=13 | | 3^(x²-1)=6561 | | 1.29x=10.32 | | 32x-1=5 | | 4n+0.2=11 | | 8x^-1=64 | | 4a+13=13 | | 4(x+2)=7(6+3x) | | (4x+2)+x=102 | | 48=18+2x | | -2y-4=12 | | -4(x+7)=-2(4x-4) | | 49=-7t+-7 | | 4)−8−x=x−4x | | -4(x+1)+3(4x-4)=8x-4x | | x+4.2=18.5 | | -5(w+2)=-35 | | (4a-7)=(2a+8) | | 3x=(-99) | | x/10=4.8 | | (5x+14)°=(9x-12) | | -6(x-2)=-8-5(x-7) | | 1/7x-25=100 | | -3(-5x+2)-6x=-2(-7x-7) | | x2−13x=-5x | | 8x+-12=15+-4 | | 56=2w=16 | | -1x+3=2x-1 | | -(6x+3)=5(x+6) |